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An increase in nutrient dose leads to proportional increases in crop
biomass and agricultural yield. However, the molecular underpin-
nings of this nutrient dose–response are largely unknown. To inves-
tigate, we assayed changes in the Arabidopsis root transcriptome to
different doses of nitrogen (N)—a key plant nutrient—as a function of
time. By these means, we found that rate changes of genome-wide
transcript levels in response to N-dose could be explained by a simple
kinetic principle: the Michaelis–Menten (MM) model. Fitting the MM
model allowed us to estimate the maximum rate of transcript change
(Vmax), as well as the N-dose at which one-half of Vmax was achieved
(Km) for 1,153 N-dose–responsive genes. Since transcription factors
(TFs) can act in part as the catalytic agents that determine the rates
of transcript change, we investigated their role in regulating N-dose–
responsive MM-modeled genes. We found that altering the abun-
dance of TGA1, an early N-responsive TF, perturbed the maximum
rates of N-dose transcriptomic responses (Vmax), Km, as well as the
rate of N-dose–responsive plant growth. We experimentally validated
that MM-modeled N-dose–responsive genes included both direct and
indirect TGA1 targets, using a root cell TF assay to detect TF binding
and/or TF regulation genome-wide. Taken together, our results sup-
port a molecular mechanism of transcriptional control that allows an
increase in N-dose to lead to a proportional change in the rate of
genome-wide expression and plant growth.
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Due to their unique ability for indeterminate growth, plants
can adapt their size and growth rate in response to the

amount of nutrient available in their environment. Nitrogen (N)
is a key nutrient that has such a dose-responsive effect on plant
growth and development (1). For this reason, N-based fertilizers
are routinely employed to enhance crop biomass and boost grain
yields. However, such fertilizers are costly and harmful to the
environment (2).
To help identify ways to improve plant N-use efficiency and

reduce reliance on N fertilizers, the signaling mechanisms that
allow plants to sense and respond to N availability are under in-
tense scrutiny. Numerous transcriptome studies have detected an
impressive catalog of genes that are differentially expressed in
response to a change in N status, which participate in a wide range
of biological processes related to growth and development (3–7).
Together, these studies indicate that a large fraction of the plant
genome, ∼10%, is transcriptionally responsive to N treatment.
Indeed, previous studies have shown that N nutrient dose

sensing enables plants to reprogram both their gene expression
patterns (8, 9) as well as their phenotype, including the rate of N
uptake and plant growth (10, 11). However, what remains un-
known are the molecular mechanisms that enable the dose of N
to inform gene expression levels, and how such gene expression
changes lead to dose-responsive changes in plant phenotype.

To address this question, we assayed transcriptome responses
of Arabidopsis thaliana roots exposed to different N-doses over
time. By modeling gene expression responses to N-dose as a
function of time, we were able to reveal the in vivo kinetics that
tailor gene expression responses to the dose of N available. By
these means, we demonstrate that the dynamics of plant tran-
scriptomic responses to N-dose follows simple kinetics, as de-
scribed by the Michaelis–Menten (MM) model. While the MM
model was designed to explain in vitro enzyme kinetics (12, 13),
due to its simplicity it has enjoyed broad applicability (14, 15),
including describing the rates of N uptake by plants and N-dose–
dependent plant growth (10, 11). Using this model, we found
that the rate of transcript accumulation is a function of N-dose,
which reached a saturation point at the highest N-doses tested.

Significance

How organisms sense and respond to changes in nutrient dose
is a basic unanswered question that is relevant to agriculture.
Here, we demonstrate that genome-wide expression levels in
the Arabidopsis root are nutrient dose-responsive. We find
that such dose-responsive gene expression patterns are driven
largely by Michaelis–Menten (MM) kinetics, indicating that
genome-wide transcriptional responses to nutrient dose re-
semble a simple principle of enzyme kinetics. Transcription
factors (TFs) can act as “catalysts” driving rates of transcript
change in response to nutrient dose. Supporting this, we
identified TGA1 as a TF that controls nitrogen-dose–dependent
rates of transcriptional change and plant growth. Thus, our
study of the molecular mechanisms that underlie N-dose–
responsive transcriptome kinetics could lead to enhanced
crop growth.
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The MM model predicts the rate at which a catalyst can
convert a substrate to its product. By analogy, transcription
factors (TFs) act in part as the “catalyst” that drive rates of
transcript change. To test this, we investigated whether altering
TF abundance in planta could impact the maximum rate at which
transcript abundance changed (Vmax) in responses to N-dose. We
show that the overexpression of the TF TGA1 (TGACG
SEQUENCE-SPECIFIC BINDING PROTEIN 1) leads to an in-
crease in the maximum rate of transcript change in response to
N-dose (Vmax), as predicted by the MM model. Furthermore, we
validated TGA1’s direct gene targets genome-wide through RNA
sequencing (RNA-seq), chromatin immunoprecipitation sequenc-
ing (ChIP-seq), and 4-thiouracil (4tU) labeling of nascent tran-
scripts, revealing that TGA1 directly regulates both N-metabolic
genes and their TF regulators. Importantly, we show that TGA1’s
impact on the kinetics of the N-dose–response at the molecular
level leads to an acceleration in N-dependent plant growth rates.
In this way, our study of the basic mechanisms that underlie the
transcriptome kinetics responding to changes in N-dose could
potentially enhance plant growth and improve N-use efficiency.

Results
N-dose Informs Rates of Transcript Change Genome-Wide in Arabidopsis
Roots. To understand the transcriptional mechanisms underlying
plant responses to N-dose, we assayed how the Arabidopsis tran-
scriptome responds to N-dose as a function of time. To achieve this,
we treated hydroponically grown, wild-type Arabidopsis seedlings to
four increasing doses of N (0, 1, 10, and 60 mM N, provided as
KNO3 + NH4NO3) over five time points (15, 30, 60, 120, and
240 min) (Fig. 1A). The maximumN-dose used reflected the amount
of N present in standard Murashige and Skoog (MS) plant growth
media (16). The time points were selected to capture the early
transcriptional events that occur in response to N sensing (5). This
experimental setup generated a factorial matrix holding 20 unique

treatment conditions (Fig. 1A). For each condition, we harvested
the root tissue of ∼30 plants and assayed their transcriptome
by RNA-seq.
To identify genes differentially expressed in response to N-

dose as a function of time, we fit normalized gene expression
patterns with a linear model. This model was designed to detect
genes that were either responsive to the dose of N provided (N),
time (T), or the interaction between the two (N×T) (Fig. 1B).
We employed model simplification to determine the best linear
model that explained each gene’s expression. After excluding
genes that were time-responsive only—and thus not relevant to
our study—we found 4,938 genes that were differentially
expressed as a function of N (adjusted P < 0.01) (Fig. 1B and
SI Appendix, Table S1). We found that 77% of these N-dose–
response genes (3,818 genes) were explained by a model holding
an N×T interaction term, indicating that the majority of genes that
responded to N-dose did so as a function of time (Fig. 1B). Among
these were well-known genes involved in N transport and assimi-
lation such as the NITRATE TRANSPORTER 1.1 (NRT1.1/
NPF6.3), NITRATE REDUCTASE 1 (NIA1), GLUTAMINE
SYNTHETASE (GLN1), ASPARTATE AMINOTRANSFERASE
(ASP3), and GLUTAMATE DEHYDROGENASE (GDH3) (SI
Appendix, Table S1). Genes that were modeled by an N×T in-
teraction term included many known N-responsive genes found
through previous transcriptomic analyses (SI Appendix, Fig. S1),
suggesting that many previously reported N-responsive genes are
N-dose responsive.
To further understand how the expression of these 3,818

“N×T” genes was governed by both N-dose and time (T), we
performed a fold-change analysis. To do this, we counted how
many genes regulated at each time-point passed a ±1.5-fold
change cutoff. This revealed that a higher N-dose led to more
genes being differentially expressed at earlier time points (Fig.
1A). We next asked whether higher doses of N lead to higher
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Fig. 1. Michaelis–Menten (MM) kinetics underlie transcriptomic responses to N-dose in Arabidopsis roots. (A) A factorial treatment matrix systematically
varied both the exposure time to N and the N-dose provided. Colors indicate how many genes were differentially expressed (fold change cutoff ± 1.5) in
response to N-dose in each condition. (B) Differentially expressed genes were detected using a multivariate linear model. Seventy-seven percent of genes
found by linear modeling (3,818 genes) were fit by a model holding an N×T term. (C) Heatmap displaying rates of transcript change for each of the 3,818
genes under each N-dose. Genes whose rate change in N-dose–responsive expression significantly fit the MM model (1,153 genes) are indicated in red. (D)
GDH1 is an example of a gene fit by model holding a “N×T” term. (E) GDH1 is also an example of a gene whose rate of N-dose–responsive expression is
significantly fit by the MM model.
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rates of transcript change for each gene. To answer this, we
calculated the change in each gene’s transcript abundance over
time under each N-dose. Each rate was calculated by fitting a
linear model to each N-dose tested (Materials and Methods).
Comparing these rates revealed a genome-wide trend; we found
that genes displayed rates of transcript change that either in-
creased or decreased in proportion to the dose of N provided (Fig.
1C). An example of a gene that fits this trend is the N-assimilation
gene GLUTAMATE DEHYDROGENASE 1 (GDH1) (Fig. 1D).
Next, we assessed whether such transcriptome responses to N-

dose fit a general biological model that describes how reaction
rates change. Specifically, we tested whether the rate changes in
transcript levels could be explained by MM kinetics (12, 13). To do
this, we fit each gene’s expression pattern to the MM model
(Materials and Methods). A gene significantly fit by this MMmodel
allowed us to estimate the maximum rate of transcript change
(Vmax), as well as the dose of N at which one-half of Vmax was
achieved (Km). We found that the MM kinetic model was able to
explain the expression responses of 1,153 N-dose responsive genes
(adjusted P < 0.05; SI Appendix, Table S2), including GDH1 (Fig.
1 D and E). Additionally, we found that the MM model was able
to describe genes either activated or repressed by N-dose (Fig.
1C). The significant gene ontology (GO) terms enriched in up-
regulated genes included “response to abiotic stimulus” and “re-
sponse to inorganic substance” (SI Appendix, Table S3). More-
over, our MM modeling approach indicated that at a N-dose of
60 mM, many genes were being induced or repressed close to their
estimated maximum rate (Vmax).

Transcription Factor TGA1 Regulates Transcriptional Response Rates
to N-dose. According to the MM model, changing enzyme
abundance will impact the maximum rate of reaction possible

(Vmax). TFs likely serve as the main catalyst driving rates of
transcript change in response to N-dose. To assess the robustness
of our MM models, as well as identify TFs that signal N-dose, we
sought to test how altering TF abundance could perturb N-dose
transcriptomic responses, with the goal of observing whether
their Vmax estimates change.
We took two complementary approaches to identify candidate

TFs responsible for mediating the rates of transcriptional change
in response to N-dose. First, we investigated the expression
patterns of TFs regulated by N-dose as a function of time within
our experiment. We hypothesized that TFs that responded early
might be involved in governing N-dose–responsive transcription.
We thus ranked all expressed TFs within the Arabidopsis genome
by their fold change in response to N-dose at the earliest time
point tested (15 min) (Fig. 2A). Of these, the top three early N-
dose–responsive TFs were LOB DOMAIN-CONTAINING
PROTEIN 37 (LBD37), LBD38, and TGA1, with 32-, 20-, and
18-fold change in gene expression, respectively (Fig. 2A and
SI Appendix, Fig. S2). All three TFs have been previously impli-
cated in transcriptional regulation of N-responsive genes in
planta (17, 18). Second, we searched for overrepresented cis-
regulatory elements in the promoters of the 1,153 genes whose
expression in response to N-dose could be explained by the MM
model (Fig. 1C). We found that the TGA1 binding site was
significantly overrepresented in the genes whose N-dose–
responsive expression could be modeled by MM kinetics (Fig.
2B). Moreover, we found that genes whose N-dose–response is
modeled by MM kinetics are preferentially expressed within in-
ner cell layers of the root (pericycle and stele), where TGA1
itself is expressed (18, 19) (SI Appendix, Fig. S3).
Together, these findings suggested that TGA1 is a TF in-

volved in regulating transcriptional responses to N-dose. To
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test this hypothesis, we repeated our factorial matrix experiment
that varied N-dose over time (Fig. 1A), but now assessing
the transcriptomic responses of a TGA1-overexpressing line
(35S::TGA1) (20) and a tga1/tga4 double mutant (18). We note it
was necessary to use the tga1/tga4 mutant line, as TGA4 is the
closest gene homolog to TGA1, and as such these TFs have been
shown to act redundantly (18). Our results indicated that over-
expression of TGA1 in planta led to increases in rates of tran-
scriptional change in response to N-dose (Fig. 2 D and F), while
knocking out TGA1 and TGA4 led to decreased rates of tran-
scriptional change (Fig. 2 E and F). This effect was captured by
fitting the MM model to gene expression patterns in the
35S::TGA1 and tga1/tga4 lines to estimate Vmax, and comparing
these Vmax estimates to those of wild type (Fig. 2). Of the 192
genes we were able to significantly model using MM kinetics in
all three genotypes (wild type, 35S::TGA1, tga1/4) (adjusted P <
0.05), we found that 75% of these genes held higher Vmax values
when TGA1 was overexpressed (35S::TGA1) (Fig. 2D and SI
Appendix, Table S2). GO terms for genes with higher Vmax esti-
mates in the TGA1-overexpressing lines included “translation,”
“glucose metabolic process,” and “generation of precursor me-
tabolites and energy” (SI Appendix, Table S2). In addition to
these 192 MM-modeled genes, we also observed higher Vmax
values for all N–up-regulated genes in the TGA1-overexpressing
line, even if their resulting model P value did not pass the sig-
nificance threshold (SI Appendix, Fig. S4). This suggested higher
expression of TGA1 leads to increased rates of transcriptional
change (i.e., increased Vmax) in response to changes in N-dose.
This was further supported through conducting the same analysis
in the tga1/tga4 knockout line, where Vmax estimates for these
genes were found to be lower compared either to wild-type or
the 35S::TGA1 line (Fig. 2 E and F and SI Appendix, Fig. S4). An
example of a gene fitting this expression pattern is illustrated in
Fig. 2C, where the MM model explains the rates of transcript
change of PYRIDOXINE BIOSYNTHESIS 1.1 (PDX1.1), a glu-
tamine amidotranferase (21), within each genotype. Here, the
35S::TGA1 line held a higher Vmax estimate compared to wild
type, while the tga1/tga4 mutant line held a lower Vmax estimate.
Changing levels of TGA1 in planta also impacted Vmax estimates
for GDH1, in a similar fashion to PDX1.1 (SI Appendix, Fig. S5).
Collectively, these data support the conclusion that TGA1 acts as
transcriptional activator, increasing transcriptional response
rates to N-dose. This is further supported by our finding that
perturbing levels of TGA1 expression had a weaker effect on
genes down-regulated by N (SI Appendix, Fig. S6).
Additionally, for MM-modeled genes that were up-regulated

by N-dose genome-wide, we found a global increase in Km esti-
mates within both the tga1/tga4 mutant and in the 35S::TGA1
lines, relative to wild type (SI Appendix, Fig. S7). Specifically, in
the tga1/tga4 mutant background, not only were the majority of
estimated maximum rates of transcriptional change (Vmax) lower
relative to wild type (Fig. 2E), but the N-dose required to achieve
half the maximum rate (Km) increased (SI Appendix, Fig. S7B).
For the 35S::TGA1 line, the Km estimates also increased (SI
Appendix, Fig. S7A). Since the estimated maximum rate of
transcriptional change (Vmax) was higher in the 35S::TGA1
background (Fig. 2D), the N-dose required to reach this higher
rate of transcriptional change is reflected in an increase in Km (SI
Appendix, Fig. S7A). The response of gene ATDF2, encoding a
ferredoxin-like superfamily protein, illustrates how Km values can
increase when TGA1 is overexpressed (35S::TGA1), as well as
when it is absent (tga1/tga4) (SI Appendix, Fig. S7D).

TF-Perturbation Assays Uncover TGA1 as a Transcriptional Activator in
Root Cells. Our transcriptomic analysis identified genes whose
response to N-dose is mediated by TGA1 in planta; over-
expression of TGA1 showed increased rates of transcript change
relative to wild-type plants (Fig. 2 C–F). To experimentally

determine whether this is a direct result of transcriptional
activation by TGA1, we used the plant cell-based TARGET TF-
perturbation assay, which can identify direct, actively transcribed
targets of a TF (22). To perform this assay, we transiently
expressed TGA1 in root protoplasts as a TGA1 glucocorticoid
receptor fusion protein (TGA1-GR). To control TF import into
the nucleus, transfected root cells expressing TGA1-GR were
sequentially treated with 1) +/− N, 2) cycloheximide (+/− CHX),
and 3) dexamethasone (+/− DEX) (Fig. 3A and Materials and
Methods). DEX treatment induces nuclear import of the TGA1-
GR fusion protein (23). Genes regulated by DEX-induced TF
import are deemed direct “primary” targets of TGA1, since a
+CHX pretreatment blocks translation of downstream regula-
tors (22, 24). N treatment is included to induce any post-
translational modifications of TGA1 (25) or influence TGA1
partners by transcriptional or posttranscriptional mechanisms.
Through analysis of mRNA-seq data, we identified 584 direct

gene targets of TGA1 in root cells (adjusted P < 0.05), 77% of
which were up-regulated by TGA1 nuclear import, a higher
proportion than expected by chance (binomial test, P = 9 × 10−40)
(Fig. 3B and SI Appendix, Table S4). This provided evidence
that TGA1 serves largely as a transcriptional activator. Addi-
tionally, genes up-regulated by TGA1 held higher significance
values and greater fold-change differences than down-regulated
genes (SI Appendix, Fig. S8A). Among the direct regulated tar-
gets of TGA1 were N-related genes AMMONIUM TRANS-
PORTER 1.3 (AMT1.3), GLUTAMATE SYNTHASE 1 (GLT1),
GLUTAMATE SYNTHASE 2 (GLU2), and GLUTAMATE
DECARBOXYLASE (GAD4) (SI Appendix, Table S4). In line
with this, GO terms enriched in TGA1 direct targets were re-
lated to metabolism including “regulation of cellular metabolic
process” and “regulation of nitrogen compound metabolic pro-
cess” (SI Appendix, Table S5).
To confirm that TGA1 directly initiates the transcription of its

584 direct targets as identified by mRNA-seq, we also tracked de
novo synthesis of mRNAs made in response to TGA1 nuclear
import. To do this, we repeated our TARGET TF-perturbation
experiment, but spiked the isolated root cells with 4tU after
DEX-induced nuclear import of TGA1, as described in ref. 26
(Fig. 3A). 4tU is a uracil analog that is incorporated into nascent
mRNA transcripts, which can then be selectively isolated using a
streptavidin mediated pull-down assay (27). Thus, we used 4tU
to label, affinity purify, and sequence de novo transcripts that
were actively transcribed in response to TGA1 nuclear locali-
zation (26). Using 4tU, we validated that TGA1 nuclear import
resulted in de novo transcription of 83% of TGA1’s 584 direct
targets (SI Appendix, Table S4). In addition, the magnitude of de
novo transcript synthesis in response to TGA1 nuclear import
correlated with the magnitude of steady-state mRNA levels (R =
0.82) (SI Appendix, Fig. S8B). This result indicates that active
transcriptional regulation by TGA1 can largely explain changes
in target gene transcript levels.
Next, we aimed to detect TGA1-DNA binding events in root

cells using the TARGET assay. To do this, we employed ChIP-
seq, using anti-GR antibodies against the TGA1-GR fusion
protein (28). The aggregate binding profile of gene targets bound
by TGA1 in root cells shows that TF binding occurs close to the
transcription start site as well as the transcription termination
site (SI Appendix, Fig. S9 and Table S4). We found a significant
overlap between genes found bound by TGA1 and target genes
directly regulated by TGA1 (SI Appendix, Fig. S8C). We also
found a significant overlap between genes bound to TGA1 by
ChIP-seq, and those bound to TGA1 as assayed by in vitro DNA
affinity purification sequencing (DAP-seq) (29) (SI Appendix,
Fig. S8C).
Combined, our mRNA-seq, 4tU, and ChIP-seq experiments

allowed us to detect gene targets that TGA1 both binds to and
actively regulates. For example, the NODULE INCEPTION
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PROTEIN 8 (NLP8) and CRY2-INTERACTING bHLH 3 (CIB3)
TFs were among genes bound to and directly regulated by
TGA1. NLP8 has been previously implicated in regulating N-
promoted seed germination (30), while CIB3 has been pre-
viously implicated in light signaling (31) (Fig. 3B). The expres-
sion of both genes was induced by TGA1 nuclear import under
+CHX treatments, indicating that NLP8 and CIB3 are primary
TGA1 targets. ChIP-seq confirmed TGA1 binding in the pro-
moter of NLP8 and CIB3, and the 4tU labeling showed that both
genes were actively transcribed due to TGA1 binding (Fig. 3B).
From these datasets, we found that TGA1 directly regulates a

large number of TFs (92 TFs out of 584 TGA1 direct targets,

16%). Indeed, the GO term “regulation of transcription” was
significantly enriched among the 584 direct targets of TGA1 (P =
0.02) (SI Appendix, Table S5). The large amount of TFs directly
controlled by TGA1 suggests that a main function of TGA1 is to
induce a transcriptional cascade. To characterize the down-
stream effects of TGA1, we performed our TARGET TF-
perturbation experiment without blocking protein translation
(i.e., in the absence of CHX). This allowed us to also detect gene
expression responses that were downstream of TGA1’s direct TF
targets (Fig. 3A). We identified a total of 2,280 “indirect” targets
of TGA1, defined as genes that are regulated by DEX-induced
nuclear import of TGA1 under −CHX conditions, but not in
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Fig. 3. TGA1 is a transcriptional activator that regulates both TFs and N-uptake/assimilation genes in root cells. (A) Workflow of TARGET TF-perturbation
assay that can detect the gene targets that TGA1 binds to and regulates in isolated root cells. (B) The TARGET TF-perturbation assay reveals TGA1 directly up-
regulates (yellow, 77%) or down-regulates (blue, 23%) the expression of 584 genes in root cells (SI Appendix, Table S4). (C) NLP8 and CIB3 TFs are examples of
direct targets transcriptionally activated by TGA1. The expression of NLP8 and CIB3 is affected by TGA1 nuclear import, as assayed by both RNA-seq (steady-
state mRNA) and by 4tU affinity capture (de novo mRNA) (green bars). TGA1 binding at these loci was captured by ChIP-seq (red bars). (D) TGA1 tran-
scriptional subnetwork in root cells, where nodes represent genes and edges represent regulatory interactions detected by our assay. TGA1 directly or in-
directly—through intermediate TFs (triangles)—regulate the expression genes involved in N uptake/metabolism (circles).
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+CHX conditions (SI Appendix, Table S4). GO term enrichment
analysis of TGA1 indirect targets included “response to nutrient
levels” and “growth.” To make sense of how the direct and indirect
targets of TGA1 identified in root cells impact the expression of
genes involved in N uptake and assimilation, we built a TF network
(Fig. 3C). We used Cytoscape (32) to visualize the resulting network
that included 32 genes in the N-uptake/assimilation pathway that
are downstream targets of TGA1. This network revealed two modes
of action of TGA1 on the N-uptake/assimilation pathway. First,
TGA1 directly regulates the expression of AMMONIUM TRANS-
PORTER 1.3 (AMT1.3), GLUTAMATE SYNTHASE 1 (GLT1),
GLUTAMATE SYNTHASE 2 (GLU2), GLUTAMATE DECAR-
BOXYLASE (GAD4), and ASPARAGINE SYNTHASE 1 (ASN1).
Second, through the regulation of secondary TFs, TGA1 indirectly
influences the expression of additional N-uptake/assimilation genes,
such as NITRATE TRANSPORTER 1.2 (NRT1.2), NITRATE
REDUCTASE 2 (NIA2), NITRITE REDUCTASE (NIR), and
ASPARTATE AMINOTRANSFERASE 3 (ASP3) (Fig. 3C).
Importantly, through repeating our TARGET TF-perturbation

experiments in root cells isolated from the tga1/tga4 mutant, we
found that the absence of TGA4 did not impact the regulation of
TGA1 direct or indirect targets, as identified by regulated TGA1
nuclear import (SI Appendix, Fig. S10). This suggests that TGA1
and TGA4 are functionally redundant in N-signaling responses, in
agreement with previous reports (18).
Last, we investigated the extent to which this TGA1 regulated

gene network identified in root cells captured genes whose N-
dose–responsive expression was explained by the MM model in
planta (Fig. 1C). We found a significant overlap of both direct and
indirect targets of TGA1 with genes whose N-dose–dependent
expression rates fit the MM model in planta (SI Appendix, Fig.
S8C). In line with TGA1 acting as an activator of gene expression,
we found that the majority of TGA1 direct targets held higher
Vmax estimates in the 35S::TGA1 line compared to wild type (SI
Appendix, Fig. S8D). We found that the majority of TGA1
downstream indirect targets also held higher Vmax estimates,
suggesting that TGA1 impacts rates of N-dose–dependent gene
expression through secondary TFs.

TGA1 Levels Mediate Accelerated Arabidopsis Growth Rates in
Response to N-dose. Since we found evidence that TGA1 plays a
role in regulating rates of transcription in response to N-dose,
including the regulation of N-uptake/assimilation genes, we next
investigated TGA1’s effect on plant phenotype under increasing
N-dose treatments. To do this, we examined how wild-type
plants, the 35S::TGA1-overexpressing line, and the tga1/tga4
double-knockout mutant line grew in response to four different
N doses (0.1, 1, 10, and 60 mM N, provided as KNO3 +
NH4NO3). By sampling whole-plant dry weight 6, 9, 12, and 15 d
after sowing, we found that levels of TGA1 expression im-
pacted plant growth rates in response to N-dose (Fig. 4 A–F
and I).
Compared to wild type, overexpression of TGA1 led to sig-

nificantly higher growth rates and increased biomass (three-way
ANCOVA, P = 4.1 × 10−5). This effect was dependent on N
dose; higher rates of growth were achieved with higher doses of
N. At the highest N-dose of 60 mM, 35S::TGA1 plants grew
three times faster than wild type, reaching a dry weight that was
2.8 times greater (Fig. 4 C and F and SI Appendix, Fig. S11). This
result was confirmed using an independent transgenic line of
35S::TGA1 (SI Appendix, Fig. S11). Consistent with these find-
ings, the tga1/tga4 mutant grew 2.9 times slower compared to
wild type, with a final dry weight that was 2.1 times smaller (P =
1.5 × 10−7) (Fig. 4 B and E and SI Appendix, Fig. S11).
We also assayed the root transcriptomes of wild-type and

35S::TGA1 plants grown under the N-dose conditions described
above. By these means, we found evidence that TGA1’s ability to
accelerate plant growth was associated with changes in expression

of TGA1 gene targets. Specifically, the N-dose–response of 1,398
genes were significantly perturbed in the 35S::TGA1 back-
ground, as identified by two-way ANCOVA analysis (SI Appen-
dix, Fig. S11 and Table S6). Among these genes were known N-
assimilation genes such as GLUTAMATE SYNTHASE (GLU1),
which displayed a higher N-dose–response in the 35S::TGA1 line
(Fig. 4G). We found that these 1,398 genes whose N-dose–
response was perturbed in the 35S::TGA1 line significantly
intersected with genes characterized as direct or indirect targets
of TGA1, or whose N-dose expression was explained by MM
kinetics (Fig. 4H). Collectively, these results suggest TGA1’s
influence on transcription rates of target genes at the molec-
ular level translates to increased rates of growth in response
to N-dose.

Discussion
As key nutrient, N has a dose-responsive effect on plant growth
and development. Indeed, N-dose–responsive traits, including
the rate of N uptake as well as the rate of N-responsive plant
growth, have been shown to follow MM kinetics (Fig. 5 A and C)
(10, 11). However, the molecular mechanisms that align the rate
of N uptake with the rate of N-mediated changes in plant growth
have remained poorly understood. Results presented herein help
bridge this gap. Specifically, we show that N-dose–responsive
transcriptome changes driven by MM kinetics underlie changes
in plant growth rate. Additionally, we identify TGA1 as a TF
involved in mediating this N-dose– response (Fig. 5B).
Previous studies have shown that mRNA responses of individ-

ual genes to changes in endogenous or exogenous signals can be
explained by the MM model (33, 34). Herein, we found the MM
model could explain transcriptome-wide transcriptional changes in
response to N-dose. Specifically, for 30% of all N-dose–responsive
genes (1,153 genes), we found that the rates at which they respond
transcriptionally to N-dose could be explained by MM kinetics
(Fig. 1). Importantly, MM model revealed the relationship be-
tween N-dose and rates of transcriptional change was not linear—
higher doses of N had diminishing effects on the rate at which
genes were induced or repressed. This effect is similar to what
occurs in in vitro enzymatic reactions the MM model describes;
the rate of the reaction will peak at saturating levels of substrate
(35). Likely, the expression of the remaining 70% of N-dose–
responsive genes that were not explained by the MM model
were driven by more complex kinetics. For example, such genes
may be influenced by both activating and repressing TFs, resulting
in more complex patterns of expression. This is supported by pre-
vious reports showing multiple TFs can target the same N-responsive
gene (20, 36). Additionally, such transcripts may hold distinct
mRNA degradation rates, or be impacted by posttranscriptional
regulatory mechanisms (37, 38); parameters that are not included
in the MM model.
Modeling transcriptome kinetics led us to identify TGA1 as a

candidate TF involved in establishing rates of transcript change
in response to N-dose (Fig. 2). This was based on TGA1’s early
N-dose–responsive expression, and the enrichment of its cis-binding
motif within the 1,153 genes whose N-dose–response fit the MM
model. By modeling the kinetics of transcript change, we found
that increasing levels of TGA1 in planta can increase the maxi-
mum rate of gene expression (Vmax). This agrees with the MM
model, where an increase in the amount of catalyst—in our case, a
TF—allows for higher rates of reaction (Vmax) to occur. By illus-
trating in vivo and genome-wide that the catalytic effects a TF can
have on transcription rates follows this simple kinetic principle, we
provide biological context to TF kinetic properties that are absent
from in vitro assays of TF–target binding.
We note that within our MM modeling, the parameters of Vmax

and Km not only depend on the transcriptional activity of TGA1,
but are also informed by additional gene regulatory mechanisms,
including other TFs. This is exemplified by N-dose–dependent
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expression of some MM-modeled genes occurring even in the
absence of TGA1 (i.e., in the tga1/tga4 mutant background) (Fig.
2E). Moreover, according to the MM model, an increase in en-
zyme concentration in vitro leads to an increase in Vmax, without a
change in Km (12). Thus, our observation of a change in Km values
in both tga1/4 mutants and in 35S::TGA1 (SI Appendix, Fig. S7)
suggests additional transcriptional or posttranscriptional mecha-
nisms are at play in regulating rates of N-dose gene expression
in vivo.
We show that the impact of TGA1 on the rate of transcriptional

change in response to N-dose is linked to TGA1’s ability to ac-
celerate plant growth (Fig. 4 and SI Appendix, Fig. S11). This is
supported by our data; a significant portion of genes whose ex-
pression can be modeled by MM kinetics in response to N-dose
are also differentially expressed in TGA1-overexpressing plants,

plants that displayed accelerated growth rates (Fig. 4 and SI Ap-
pendix, Fig. S11). In this way, TGA1 likely plays a key role in
aligning the rate of N uptake with rate of N growth (Fig. 5). For
this reason, our findings provide context as to why overexpression
of TFs can lead to improvements in plant growth responses. Such
a mechanism may be at work in other studies in which over-
expression of TFs involved in N signaling have led to improve-
ments in plant N-use efficiency, such as DOF1 and NLP7 (39, 40).
For our study, we speculate that the increase in growth rate caused
by TGA1 overexpression is due to improvements in N-assimilation
efficiency, rather than an increase in N uptake. This is suggested
by our TGA1 network, which reveals that TGA1 directly—or in-
directly through intermediate TFs—regulates 12 genes involved in
N assimilation in root cells, compared to only three genes involved
in N transport (Fig. 3C). This interpretation is also supported by
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Fig. 4. Changes in TGA1 levels impacts N-dose–responsive growth rates in planta. (A–C) Growth rates of (A) wild-type, (B) tga1/tga4, and (C) 35S::TGA1 seedling
growth over time (days) under different N-doses. The impact of N-dose on growth rates differs significantly between wild-type and the 35S::TGA1 line (three-way
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previous studies showing that TGA1 regulates genes involved in N
metabolism in roots (18, 20), and that N uptake is not perturbed in
tga1/tga4 double mutant (18). However, we note that TGA1’s ef-
fect on N-dose–responses likely involves more than simply tar-
geting N-assimilation genes. We found evidence that TGA1
regulates the expression of 92 other TFs—agreeing with a pre-
vious report showing TGA1 regulates the expression of many N-
responsive TFs (20). Consequently, TGA1 does not act alone in
regulating N-dose–responses.
Since TGA1’s expression itself is responsive to N-dose, it is

likely that TGA1 sits downstream of the molecular mechanisms
that sense N-dose. One such mechanism is NRT1.1, a nitrate
transceptor that allows plants to sense a wide range of nitrate
doses, and whose expression is also driven by MM kinetics (33).
To test the hypothesis that TGA1 sits downstream of the
NRT1.1 nitrate transceptor, we overlapped genes whose ex-
pression is dependent on NRT1.1 (41) with genes regulated by
TGA1 (20), as well as genes whose expression is modeled by MM
kinetics in our study (SI Appendix, Fig. S12). The significant
overlap between these gene lists suggest that NRT1.1 and TGA1
are in the same pathway that control rates of transcriptional
change in response to N-dose (Fig. 5 and SI Appendix, Fig. S12).
Our finding that increasing TGA1 mRNA levels results in pro-

portional increases in mRNA of its target genes supports time-
based methods that rely on TF mRNA levels to infer TF–target
interactions (4, 5, 42, 43). In agreement with this, one recent study
that employed time-series mRNA data to infer TF–target interac-
tions used 33 TFs—including TGA1—to experimentally validate
the resulting gene-regulatory network (20). In that study, TGA1
mRNA levels were able to predict target gene expression with one
of the highest precision rates (75%) of all 33 TFs tested (20).
Finally, our study demonstrates that assaying for rates of

transcript change in response to nutrient dose, rather than simply
a change in gene expression at one time point, represents a
fruitful approach to identify loci of interest. Indeed, this ap-
proach could be applied to identify TF regulators of other types

of environmental cues in plants or other species. In our case, we
identified TGA1, a TF that accelerates plant growth responses to
N in part by impacting transcription rates of N-metabolism genes.
As such, future work should investigate whether overexpression of
TGA1 enhances crop growth in the field. More broadly, our study
of the basic mechanisms that underlie the transcriptome kinetics
that respond to changes in N-dose has the potential to enhance
plant growth rates and improve N-use efficiency.

Materials and Methods
N-Dose-by-Time Factorial Experiment. Approximately 100 seedlings of Ara-
bidopsis Col-0, 35S::TGA1 (sourced from ref. 20) and tga1/tga4 (sourced from
ref. 18) genotypes were grown for 13 d hydroponically on MS media (16),
supplemented with 1 mM KNO3 and 1% sucrose. Light conditions were di-
urnal (16-h light and 8-h dark), with light intensity 120 μmol·m−2·s−1 at
constant temperature of 22 °C. After 13 d, plants were starved for N for 1 d.
After 24 h of N starvation, 2 h after subjective dawn, plants were provided
with one of four N-doses, either no N, 0.3 mM KNO3 + 0.3 mM NH4NO3,
3.3 mM KNO3 + 3.3 mM NH4NO3 or 20 mM KNO3 + 20 mM NH4NO3. This
created total-N doses of 0, 1, 10, or 60 mM. For each N-dose, N exposure time
lasted for one of five time periods: 15, 30, 60, 120, or 240 min. At the re-
spective time point, roots were cut and frozen immediately in liquid nitro-
gen. Each genotype was tested under each dose–time condition in duplicate.

RNA was extracted from root tissue using the RNeasy Mini Kit (Qiagen) with
on-column DNase treatment. RNA quality was assessed using Agilent Tapes-
tation using High Sensitivity RNA ScreenTape. One microgram of total RNA per
samplewas depletedof rRNAby ThermoFisher ScientificmRNAPurificationKit.
RNA-seq libraries were made using the NEBNext Ultra RNA Library Prep Kit and
sequenced using Next Seq Illumina platform with 1×75-bp single read-end
chemistry. Reads were then aligned to the Arabidopsis TAIR10 genome using
Tophat (44), and gene counts called using HT-seq (45) with Araport11 anno-
tation (46). Statistical analyses were then performed in R, as detailed below.

To control for the effect of potassium ions inducing differential expression
within our assay, we compared Arabidopsis seedlings (Col-0) treated for 240
min with a dose of 20 mM KNO3 + 20 mM NH4NO3 with seedlings treated for
240 min with a mock dose of 20 mM KCl. We found 44 differentially
expressed genes due to salt treatment using DESeq2 (47) (adjusted P < 0.01).
These genes were removed from subsequent analyses.
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N-Dose-by-Time Statistical Analysis. Our factorial matrix experiment held two
continuous variables—time and N-dose. To capture genes that were differentially
expressed by either or both of these factors, we used the following linear model:

genea expression= α + β1N + β2T + β3N × T.

The full linear model was fit to the RNA-seq read counts of each gene (imple-
mented in DESeq2 using design ∼ N + T + N × T), where N and T variables were
logged to the base 2. We then performed model simplification as follows:

1) Using the “LRT” command, an adjusted P value was computed for each
of the factors within the model across all fit genes.

2) If a gene were fit significantly by all three terms (adjusted P < 0.01), then
this gene was deemed fit by the full model and removed from remaining
model simplification steps.

3) For all remaining genes, the factor with the least significance (highest
adjusted P value) was removed, and the model was refit with the remain-
ing terms. This allows for one of three variations of a simplified model to
be fit for each gene.

4) If a gene was fit significantly by two terms (both adjusted P values <
0.01), then this gene was deemed fit by a two-term model and removed
from remaining model simplification steps.

5) Steps 3 and 4 were repeated fitting one term models.

If a gene was not fit by any model form, then it was removed from further
analysis. GO terms were called using VirtualPlant software (48).

To calculate rates of change in transcript abundance of genes at each N-dose,
we fit each gene’s quantile-normalized expression values using the lm() function
in R, using time as the dependent variable. These estimated rates of transcription
under each N dose were then fit to the MMmodel using the drm() function in R.
We note that rates were first normalized by subtracting the rate calculated for
the 0 mM condition. After this subtraction, we then took the absolute values of
each rate, which allowed us to model genes that had decreases in rates of
transcription at higher N-doses (conferring to increases in gene repression over
N-dose). We calculated the significance of the model by correlating model pre-
dicted values with input values (Pearson false-discovery rate-normalized P <
0.05). Additionally, we tested whether a simpler model could explain changes in
transcription dynamics. We assessed whether any of the 3,818 genes followed
first-order kinetics—a model in which the rate of mRNA change is linearly pro-
portional to N-dose. We found no genes that significantly fit this model.

RNA-Seq, 4tU, and ChIP-Seq TARGET TF-Perturbation Experiments. The cell-
based TARGET assay for TF perturbation was performed as described in
ref. 22 for steady-state mRNA and as in ref. 26 to capture de novo transcripts
with 4tU. Briefly, Col-0 or tga1/tga4 seedlings were grown on vertical plates
supplemented with MS media at 1 mM KNO3 and 1% sucrose under light
conditions as described above. After 14 d, 2 h after subjective dawn, plant
roots were harvested, finely cut, and placed in protoplast solution for 3 h.
Root cell protoplasts were then washed and then PEG mediated transfected
with pBOB11_C-term (available through https://gatewayvectors.vib.be/; Na-
tional Center for Biotechnology Information accession number MN991175),
a derivative of the pBeaconRFP_GR TARGET TF expression vector (22), which
contains the TGA1-GR fusion protein and a 35S::RFP gene for selection of
transfected cells by fluorescence-activated cell sorting (FACS) (22). Trans-
fected root cells were incubated overnight to express the TF-GR fusion
protein. The following day, the root cells were treated 2 h after subjective
dawn with N-dose present in standard MS media (20 mM KNO3 + 20 mM
NH4NO3), or control 20 mM KCl treatment. Cells were treated with CHX
100 min thereafter, or with a mock treatment of DMSO to enable the iden-
tification only of direct targets of the TF. To induce TF-GR localization to the
nucleus, cells were treated with DEX 20 min thereafter, or with a mock
ethanol treatment. Each treatment combination was tested in triplicate.
Treated root cells were incubated for a further 2 h, then successfully transfected
cells were FACS purified using RFP expression. To perform 4tU mRNA labeling,
we repeated the above experimental treatment on transfected root protoplasts,
treating three replicates of transfected root protoplasts with 1.5 mM 4tU in the
presence of DEX and CHX, and three replicates in the presence of CHX only (26).
All RNA-seq libraries were prepared through purifying polyadenylated

transcripts as previously described above, and sequenced using the HiSeq
Illumina platform with 1×50-bp single read-end chemistry or Next Seq Illu-
mina platform with 1×75-bp single read-end chemistry.

For ChIP-seq analysis of TF binding, Col-0 seedlings were grown, and root
cells were isolated and transfected as described above. Approximately 1
million root cells were treated for 100minwith 20mMKNO3+ 20mMNH4NO3,
followed by a 20-min treatment with CHX, followed by a treatment of DEX
lasting 1 min. Protoplasts were fixed with formaldehyde for 10 min, and then
treated with 2 M glycine for 5 min, before being flash frozen in liquid nitro-
gen. ChIP was performed on samples as outlined in ref. 28, using an anti-GR
antibody (GR P-20; Santa Cruz Biotechnology; 200 μg/mL). ChIP-seq libraries
were made using NEBNext Ultra II DNA Library Prep Kit and sequenced using
Next Seq Illumina platform with 1×75-bp single read-end chemistry.

TARGET RNA-Seq Statistical Analysis. To find direct targets of TGA1, we
implemented a three-way ANODEV model on our +CHX RNA-seq datasets in
DESeq2 with design ∼ N + DEX + biological replicate. To find genes directly
regulated by TGA1 in the presence of CHX, we took those genes that were
significantly differentially expressed due to DEX treatment using the contrast
function (adjusted P value < 0.01). To control for the effects of CHX on gene
expression, we performed a two-way ANODEV model on our –CHX RNA-seq
dataset, using design ∼ N + DEX. In this way, we found those genes that were
significantly differentially expressed due to DEX treatment in the absence of
CHX (adjusted P value < 0.01). We deemed a gene a direct target of TGA1 if it
was differentially expressed due to DEX-induced TF nuclear import in both
+CHX and –CHX conditions. A gene was deemed an indirect TARGET of TGA1 if
it was found to be regulated in response to DEX-induced TF nuclear import only
in the absence of CHX. GO terms were called using VirtualPlant software (48).

ChIP-Seq Analysis. Reads obtained from the ChIP DNA and Input DNA were
filtered and aligned to the Arabidopsis thaliana genome (TAIR10) using
Bowtie2 (49), where clonal reads were removed. The ChIP alignment data
were compared to its partner Input DNA and peaks were called using MACS2
(q = 0.05) (50). These regions were overlapped with the genome annotation
to identify genes within 2 kbp downstream of the peak using Bedtools (SI
Appendix, Table S5) (51). Genome browser images were made using the
Integrative Genomics Viewer (52).

Plant Biomass Phenotyping. Arabidopsis seedlings—Col-0, 35S::TGA1 (line 1),
35S:TGA1 (line 2), and tga1/tga4—were grown on vertical plates. Light and
temperature conditions were identical to those described above. Plants were
grown on MS media, with total N concentrations 0.1, 1, 10, and 60 (where N
was supplied as KNO3 + NH4NO3). Total plant dry weight was measured 6, 9,
12, and 15 d after sowing.

Steady-State Transcriptomics. Arabidopsis seedlings Col-0 and 35S::TGA1, were
grown on vertical plates for 15 d on 0.1, 0.5, 10, 20, or 60 mM N KNO3 +
NH4NO3. Root tissue was then flash frozen and sequenced as described pre-
viously. To discover differentially expressed genes, we fit an ANODEV model in
DESeq2 (using design ∼ Genotype + log2Nitrogen). We used genes that were
found differentially expressed in response to both log2Nitrogen and Genotype
factors to intersect with other gene sets. The significance of intersects were
assessed using Monte Carlo simulations (10,000 iterations), using the intersect
of differentially expressed genes within each dataset as background.

Data Availability. The data and R code that support the findings of this study
are available from the corresponding author upon reasonable request. Raw
sequencing data can be found at the National Center for Biotechnology
Information Sequence Read Archive (accession number PRJNA522060).
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